Mission-critical databases in the cloud. Oracle RAC on Microsoft Azure enabled by FlashGrid® Cluster engineered cloud system.

White Paper

rev. 2022-01-06
Abstract

Ensuring high availability of backend relational databases is a critical part of the cloud strategy - whether it is a lift-and-shift migration or a green-field deployment of mission critical applications. FlashGrid is an engineered cloud system designed for database high availability. FlashGrid is delivered as a fully integrated Infrastructure-as-Code template that can be customized and deployed to Azure account with a few mouse clicks. Key components of FlashGrid on Azure include:

- Azure Virtual Machines
- Azure Managed Premium SSD block storage
- FlashGrid Storage Fabric software
- FlashGrid Cloud Area Network software
- Oracle Grid Infrastructure software
- Oracle RAC database engine

By leveraging the proven Oracle RAC database engine FlashGrid enables the following use-cases:

- Lift-and-shift migration of existing Oracle RAC databases to Azure.
- Migration of existing Oracle databases from high-end on-premises servers to Azure without reducing availability SLAs.
- Design of new mission critical applications for the cloud based on the industry proven and widely supported database engine.

This paper provides architectural overview of FlashGrid engineered cloud systems and can be used for planning and designing high availability database deployments on Azure.

Why Oracle RAC Database Engine

Oracle RAC provides an advanced technology for database high availability. Many organizations use Oracle RAC for running their mission-critical applications, including most financial institutions and telecom operators where high-availability and data integrity are of paramount importance.

Oracle RAC is an active-active distributed architecture with shared database storage. The shared storage plays a central role in enabling automatic failover, zero data loss, 100% data consistency, and in preventing application downtime. These HA capabilities minimize outages due to unexpected failures, as well as during planned maintenance.

Oracle RAC technology is available for both large scale and entry level deployments. Oracle RAC Standard Edition 2 provides a very cost-efficient alternative to open-source databases, while ensuring the same level of high availability that the Enterprise Edition customers enjoy.

Supported Cluster Configurations

FlashGrid enables variety of RAC cluster configurations in Azure. Two or three node clusters are recommended in most cases. Clusters with four or more nodes can be used for extra HA or performance. It is possible to have clusters with 4+ nodes containing several 2- or 3-node database sub-clusters. It is also possible to use FlashGrid for running single-instance databases with automatic fail-over, including Standard Edition High Availability (SEHA).

Nodes of a cluster can be spread across availability zones to ensure the highest degree of fault isolation. Availability sets with fault domains can be used in the regions that do not currently support availability zones.
Configurations with two RAC database nodes
Configurations with two RAC nodes have 2-way data mirroring using Normal Redundancy ASM disk groups. An additional VM is required to host quorum disks. Such cluster can tolerate loss of any one node without database downtime.

![Diagram of two RAC database nodes](image1)

Figure 1. Two RAC database nodes across availability zones

Configurations with three RAC database nodes
Configurations with three RAC nodes have 3-way data mirroring using high redundancy ASM disk groups. Two additional VMs are required to host quorum disks. Such a cluster can tolerate the loss of any two nodes without database downtime.

![Diagram of three RAC database nodes](image2)

Figure 2. Three RAC database nodes across availability zones
Four or more RAC database nodes across availability zones

It is possible to configure clusters with 4 or more nodes across availability zones with 2 or more database nodes per availability zone. The database nodes are spread across two availability zones. The third availability zone is used for the quorum node. Such cluster can tolerate loss of an entire availability zone. But in addition, it allows HA within each availability zone, which helps with application HA design.

How It Works

FlashGrid Architecture Highlights

- Database clusters delivered as Infrastructure-as-Code templates for automated and repeatable deployments
- FlashGrid Cloud Area Network™ software enables high-speed overlay networks with advanced capabilities for HA and performance management
- FlashGrid Storage Fabric software turns locally attached disks into shared disks accessible from all nodes in the cluster
- FlashGrid Read-Local™ Technology minimizes network overhead by serving reads from locally attached disks
- 2-way or 3-way mirroring of data across separate nodes or Availability Zones
- Oracle ASM and Clusterware provide data protection and availability

Network

FlashGrid Cloud Area Network™ (CLAN) enables running high-speed clustered applications in public clouds or multi-datacenter environments with the efficiency and control of a Local Area Network.

The network connecting Azure VMs is effectively a single IP network with a fixed amount of network bandwidth allocated per VM for all types of network traffic. However, the Oracle RAC architecture requires separate networks for client connectivity and for the private cluster interconnect between the cluster nodes. There are two main reasons for that: 1) the cluster interconnect must have low latency and sufficient bandwidth to ensure adequate performance of the inter-node locking and Cache Fusion, 2) the cluster interconnect is used for transmitting raw data and for security reasons must be accessible by the database nodes only. Also, Oracle RAC requires network with multicast capability, which is not available in Azure.
FlashGrid CLAN addresses the limitations described above by creating a set of high-speed virtual LAN networks and ensuring QoS between them.

```
+----------------+-----------------+-----------------+
| Availability Zone A | Availability Zone B | Availability Zone C |
+----------------+-----------------+-----------------+
| fg-priv: 192.168.2.1 | fg-priv: 192.168.2.2 | fg-priv: 192.168.2.3 |
| fg-storage: 192.168.3.1 | fg-storage: 192.168.3.2 | fg-storage: 192.168.3.3 |
| eth0: 172.0.1.11   | eth0: 172.0.2.12  | eth0: 172.0.3.13  |
+----------------+-----------------+-----------------+
| Cloud VM 1      | Cloud VM 2      | Cloud VM 3      |
+----------------+-----------------+-----------------+
```

Figure 4. FlashGrid CLAN virtual subnets

Network capabilities enabled by FlashGrid CLAN for Oracle RAC in Azure:

- Each type of traffic has its own virtual LAN with a separate virtual NIC, e.g. `fg-pub`, `fg-priv`, `fg-storage`
- Negligible performance overhead compared to the raw network
- Minimum guaranteed bandwidth allocation for each traffic type while accommodating traffic bursts
- Low latency of the cluster interconnect in the presence of large volumes of traffic of other types
- Transparent virtual IP failover between nodes
- Multicast support
- Up to 100 Gb/s bandwidth per node

Shared Storage

FlashGrid Storage Fabric turns locally attached disks into shared disks accessible from all nodes in the cluster. The sharing is done at the block level with concurrent access from all nodes.

```
+----------------+-----------------+-----------------+
| Node 1          | Node 2          | Node 3          |
+----------------+-----------------+-----------------+
| DB Instance 1   | DB Instance 2   | DB Instance 3   |
| ASM Instance 1  | ASM Instance 2  | ASM Instance 3  |
+----------------+-----------------+-----------------+
| ![Disk Diagram](disk-diagram.png) | ![Disk Diagram](disk-diagram.png) | ![Disk Diagram](disk-diagram.png) |
+----------------+-----------------+-----------------+
```

Figure 5. FlashGrid Storage Fabric with FlashGrid Read-Local Technology

In 2-node or 3-node clusters each database node has a full copy of user data stored on Azure Premium SSD disks attached to that database node. The FlashGrid Read-Local™ Technology allows serving all read I/O from the locally attached disks and increases both read and write I/O performance. Read requests avoid the extra
network hop, thus reducing the latency and the amount of the network traffic. As a result, more network bandwidth is available for the write I/O traffic.

ASM Disk Group Structure and Data Mirroring

FlashGrid software leverages proven Oracle ASM capabilities for disk group management, data mirroring, and high availability. In Normal Redundancy mode each block of data has two mirrored copies. In High Redundancy mode each block of data has three mirrored copies. Each ASM disk group is divided into failure groups – one failure group per node. Each disk is configured to be a part of a failure group that corresponds to the node where the disk is located. ASM stores mirrored copies of each block in different failure groups.

![ASM disk group with Normal Redundancy](image)

Figure 6. Example of a Normal Redundancy disk group in a 2-node RAC cluster

A typical Oracle RAC setup in Azure will have three Oracle ASM disk groups: GRID, DATA, FRA.

In a 2-node RAC cluster all disk groups must have Normal Redundancy. The GRID disk group containing voting files is required to have a quorum disk for storing a third copy of the voting files. Other disk groups also benefit from having quorum disks as they store a third copy of ASM metadata and improve failure handling.

In a 3-node cluster all disk groups must have High Redundancy in order to enable full Read-Local capability. The GRID disk group containing voting files is required to have two additional quorum disks, so it can have five copies of the voting files. Other disk groups also benefit from having the quorum disks as they store additional copies of ASM metadata for better failure handling.

![ASM disk group with High Redundancy](image)

Figure 7. Example of a High Redundancy disk group in a 3-node RAC cluster
High Availability Considerations

FlashGrid Storage Fabric and FlashGrid Cloud Area Network™ have a fully distributed architecture with no single point of failure. The architecture leverages HA capabilities built in Oracle Clusterware, ASM, and Database.

Availability Sets and Availability Zones

Azure offers two features that allow protecting a cluster from two VMs going offline simultaneously: Availability Sets and Availability Zones.

Configuring an Availability Set allows placing cluster nodes in separate Update Domains and separate Fault Domains. Placing VMs in separate Update Domains ensures that those VMs will not be rebooted simultaneously during a planned update of the underlying Azure infrastructure. Placing VMs in separate Fault Domains ensures that those VMs have separate power sources and network switches. Thus, failure of a power source or a network switch will be localized to a single Fault Domain and will not affect VMs in other Fault Domains. Note that for using separate Fault Domains the region must support three Fault Domains. It is still possible to deploy 2-node clusters in the regions that provide only two Fault Domains by placing the quorum VM in a different region. Details of such configuration are beyond the scope of this white paper.

Availability Zones offer better degree of failure isolation by having independent power, cooling, and networking in physically separate data centers. FlashGrid recommends spreading the cluster nodes across Availability Zones in regions where Availability Zones are supported.

Because all instances are virtual, failure of a physical host causes only a short outage for the affected node. The node VM will automatically restart on another physical host. This significantly reduces the risk of double failures.

Data Availability

A Premium SSD disk in Azure provides persistent storage that survives a failure of the node VM. After the failed VM restarts on a new physical node all its volumes are attached with no data loss.

Premium SSD disks have built-in redundancy that protects data from failures of the underlying physical media. The mirroring by ASM is done on top of the built-in protection of Premium SSD disks. Together Premium SSD disks plus ASM mirroring provide durable storage with two layers of data protection, which exceeds the typical level of data protection in on-premises deployments.

Performance Considerations

Supported VM Types and Sizes

Database node VMs must have 2+ physical CPU cores, 32+ GB of memory, and Premium storage support. The following VM types are recommended for database nodes: Edsv5, Ddsv5, Edsv4, Ddsv4, Esv3, Dsv3, Lsv2, M, Msv2, Mdsv2, FX.

DS2_V2 or D4s_v3 (2 physical cores) type is recommended for use as a quorum node. Note that there is no Oracle Database software installed on the quorum node.

Supported Disk Types

Currently only Premium SSD disks are supported for production deployments.

Each disk provides up to 20,000 IOPS and 900 MB/s depending on its size. The maximum performance of 20,000 IOPS is available for 32 TB disks. For databases that require high performance, but smaller capacity, use of multiple 512 GB or 1024 GB disks may be optimal to maximize the total IOPS and MB/s. Note that maximum number of IOPS per VM is also capped and depends on the VM size.
Reference Performance Results

The main performance related concern when moving database workloads to the cloud tends to be around storage and network I/O performance. There is a very small to zero overhead related to the CPU performance between bare-metal and Azure cloud. Therefore, in this paper we focus on the I/O performance.

Calibrate_IO

The CALIBRATE_IO procedure provides an easy way for measuring storage performance including maximum bandwidth, random IOPS, and latency. The CALIBRATE_IO procedure generates I/O through the database stack on actual database files. The test is read-only and it is safe to run it on any existing database. It is also a good tool for directly comparing performance of two storage systems because the CALIBRATE_IO results do not depend on any non-storage factors, such as memory size or the number of CPU cores.

Test configuration:

- Two database nodes, E104ids_v5
- Sixteen 2048 GB Premium SSD disks per node

Test script:

```sql
SET SERVEROUTPUT ON;
DECLARE
    lat INTEGER;
    iops INTEGER;
    mbps INTEGER;
BEGIN
    DBMS_RESOURCE_MANAGER.CALIBRATE_IO (32, 10, iops, mbps, lat);
    DBMS_OUTPUT.PUT_LINE ('Max_IOPS = ' || iops);
    DBMS_OUTPUT.PUT_LINE ('Latency = ' || lat);
    DBMS_OUTPUT.PUT_LINE ('Max_MB/s = ' || mbps);
END;
/```

Our CalibrateIO results:

<table>
<thead>
<tr>
<th>Cluster configuration</th>
<th>Max IOPS</th>
<th>Latency, ms</th>
<th>Max MB/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 RAC nodes (E104ids_v5 with 16 x 2048 GB Premium SSD each)</td>
<td>377,000</td>
<td>0.532</td>
<td>7683</td>
</tr>
<tr>
<td>3 RAC nodes (E104ids_v5 with 16 x 2048 GB Premium SSD each)</td>
<td>587,000</td>
<td>0.545</td>
<td>11494</td>
</tr>
</tbody>
</table>

Note that the Calibrate_IO results do not depend on whether the database nodes are in the same or different Availability Zones.

SLOB

SLOB is a popular tool for generating I/O intensive Oracle workloads. SLOB generates database SELECTs and UPDATEs with minimal computational overhead. It complements Calibrate_IO by generating mixed (read+write) I/O load. AWR reports generated during the SLOB test runs provide various performance metrics. For the purposes of this paper we focus on the I/O performance numbers.

Our SLOB results:

<table>
<thead>
<tr>
<th>Cluster configuration</th>
<th>Physical Read Database Requests</th>
<th>Physical Write Database Requests</th>
<th>Physical Read+Write Database Requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 RAC nodes, single AZ</td>
<td>288,023 IOPS</td>
<td>32,525 IOPS</td>
<td>320,548 IOPS</td>
</tr>
<tr>
<td>2 RAC nodes, multi-AZ</td>
<td>260,257 IOPS</td>
<td>29,027 IOPS</td>
<td>289,284 IOPS</td>
</tr>
<tr>
<td>3 RAC nodes, multi-AZ</td>
<td>376,064 IOPS</td>
<td>42,828 IOPS</td>
<td>418,892 IOPS</td>
</tr>
</tbody>
</table>
Test configuration details

- SGA size: 3 GB (small size selected to minimize caching effects and maximize physical I/O)
- 8KB database block size
- 240 schemas, 240MB each
- SLOB UPDATE_PCT= 10 (10% updates, 90% selects)
- Database nodes: E104ids_v5
- Disks: 16 x 2048 GB Premium SSD per database node

Performance vs. on-premise solutions

Premium SSD disks provide order of magnitude improvement in IOPS and latency compared to traditional spinning hard drive based storage arrays. With 100’s of KIOPS, the performance is comparable to having a dedicated all-flash storage array. It is important to note that the storage performance is not shared with other clusters. Every cluster has its own dedicated set of Premium SSD disks, which ensures stable and predictable performance with no interference from noisy neighbors.

Software Compatibility

The following versions of software are supported with FlashGrid:

- Oracle Database: ver. 19c, 18c, 12.2, 12.1, or 11.2
- Oracle Grid Infrastructure: ver. 19c
- Operating System: Oracle Linux 7/8, Red Hat Enterprise Linux 7/8

Automated Infrastructure-as-Code Deployment

FlashGrid Launcher tool automates the process of deploying a cluster. The tool provides a flexible web-interface for defining cluster configuration and generating an Azure Resource Manager template for it. The following tasks are performed automatically using the Azure Resource Manager template:

- Creating cloud infrastructure: VMs, storage, and optionally network
- Installing and configuring FlashGrid Cloud Area Network
- Installing and configuring FlashGrid Storage Fabric
- Installing, configuring, and patching Oracle Grid Infrastructure
- Installing and patching Oracle Database software
- Creating ASM disk groups

The entire deployment process takes approximately 90 minutes. After the process is complete the cluster is ready for creating a database. Use of automatically generated standardized IaC templates prevents human errors that could lead to costly reliability problems and compromised availability.

Conclusion

FlashGrid engineered cloud systems offer a wide range of highly available database cluster configurations on Azure ranging from cost-efficient 2-node clusters to large high-performance clusters. Combination of the proven Oracle RAC database engine, Azure availability zones, and the fully automated Infrastructure-as-Code deployment provides high availability characteristics exceeding those of the traditional on-premises deployments.
Contact Information

For more information please contact FlashGrid at info@flashgrid.io

Copyright © 2017-2022 FlashGrid Inc. All rights reserved.

This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document.

FlashGrid is a registered trademark of FlashGrid Inc. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Red Hat is a registered trademark of Red Hat Inc. Microsoft and Azure are registered trademarks of Microsoft Corporation. Other names may be trademarks of their respective owners.